TensorFlow常用函数说明
tf.concat()
组合两个张量,axis表示是把哪个维度进行组合即直接把对应维度相加
a = np.arange(6).reshape(2, 3)
b = np.arange(6).reshape(2, 3)
print(a.shape)
print(b.shape)
c = tf.concat((tf.convert_to_tensor(a), tf.convert_to_tensor(b)), 0)
print(c)
d = tf.concat((tf.convert_to_tensor(a), tf.convert_to_tensor(b)), 1)
print(d)
out:
(2, 3)
(2, 3)
Tensor("concat:0", shape=(4, 3), dtype=int32)
Tensor("concat_1:0", shape=(2, 6), dtype=int32)
tf.expand_dims()
扩展一个维度
a = tf.range(10)
print(a)
b = tf.expand_dims(a, 0)
print(b)
out:
Tensor("range:0", shape=(10,), dtype=int32)
Tensor("ExpandDims:0", shape=(1, 10), dtype=int32)
tf.tile()
张量扩展,如果现有一个形状如[width
, height
]的张量,需要得到一个基于原张量的,形状如[batch_size
,width
,height
]的张量,其中每一个batch的内容都和原张量一模一样
a = tf.expand_dims(tf.range(10), 0)
print(a)
b = tf.tile(a, [32, 1])
print(b)
out:
Tensor("ExpandDims:0", shape=(1, 10), dtype=int32)
Tensor("Tile:0", shape=(32, 10), dtype=int32)
tf.linalg.LinearOperatorLowerTriangular()
给张量设置一个全是0的上三角
a = np.arange(1, 10).reshape(3, 3)
a = tf.convert_to_tensor(a, tf.float32)
b = tf.linalg.LinearOperatorLowerTriangular(a).to_dense()
with tf.Session() as sess:
c = sess.run(b)
print(c)
out:
[[1. 0. 0.]
[4. 5. 0.]
[7. 8. 9.]]
tf.where(tf.equal(a, 0),b,c)
a中为0的位置取b的值,不为0的位置取c的值
a = [[1, 1, 0], [0, 1, 0], [0, 0, 1]]
b = [[1, 1, 1], [1, 1, 1], [1, 1, 1]]
c = [[2, 2, 2], [2, 2, 2], [2, 2, 2]]
d = tf.where(tf.equal(a, 0), b, c)
with tf.Session() as sess:
print(sess.run(d))
out:
[[2 2 1]
[1 2 1]
[1 1 2]]
tile(a, [2, 3])
把a进行扩展,扩展后的结果维度不变,扩展的内容是继续接在每一个维度的值的后面
a = tf.constant([[1, 2], [3, 4]], dtype=tf.float32)
b = tf.tile(a, [2, 3])
with tf.Session() as sess:
print(sess.run(b))
out:
[[1. 2.]
[3. 4.]]
[[1. 2. 1. 2. 1. 2.]
[3. 4. 3. 4. 3. 4.]
[1. 2. 1. 2. 1. 2.]
[3. 4. 3. 4. 3. 4.]]